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Abstract – In this paper propose a noise removal 

method for reducing low and high noise in digital images. 

An efficient Rao-Blackwellized Particle Filter (RBPF) with 

MLE edge Preserving approach is used for improving the 

learning stage of the image structural model and guiding the 

particles to the most appropriate direction. It increases the 

efficiency of particle transitions. The proposal distribution is 

computed by conditionally Gaussian state space models and 

Rao-Blackwellized particle filtering with MLE edge 

Preserving. The discrete state of operation is identified 

using the continuous measurements corrupted by Gaussian 

noise. The analytical structure of the model is computed by 

the distribution of the continuous states. The posterior 

distribution can be approximated with a recursive, stochastic 

mixture of Gaussians. Rao-Blackwellized particle filtering 

is a combination of a particle filter (PF) and a bank of 

Kalman filters. The distribution of the discrete states is 

computed by using Particle Filters and the distribution of 

the continuous states are computed by using a bank of 

Kalman filters. The RBPF with MLE edge Preserving is 

very effective in eliminating noise when compared with 

particle filter. In this paper different performance metrics 

are evaluated for this type of noise removal technique. The 

metrics are Mean Square error, Root Mean square error, 

Peak Signal to Noise Ratio, Normalized absolute Error, and 

Normalized Cross Correlation, Mean Absolute Error and 

Signal to Noise Ratio. Experimental results prove that 

RBPF with MLE edge Preserving outperforms for degraded 

surveillance images.  

 

Index Terms: Kalman filter, Particle filter, Rao-

Blackwellized particle filter, Sampling Importance 

Resampling 

 

I. INTRODUCTION 

Restoration of degraded images has become an 

important and effective technique in aerial imaging, medical 

imaging and many other applications. The images obtained 

are a degraded version of the original image due to imaging 

process, atmosphere and the recording medium which 

introduce noises in the captured image. No imaging system 

gives images of perfect quality because of degradations 

caused by various reasons. So the image needs to be 

restored for subsequent computer processing and human 

viewing.  

Rao-Blackwellized Particle Filter (RBPF) is an 

efficient Monte Carlo particle filter for restoring images. 

This algorithm finds the analytical structure of the model. 

The distribution of the continuous states is computed 

exactly by knowing the values of the discrete states. A 

particle filter (PF) which is used to compute the distribution 

of the discrete states and a bank of Kalman filters which is 

used to compute the distribution of the continuous states. 

Therefore, combine a particle filter (PF) with a bank of 

Kalman filters is known as Rao-Blackwellization, because it 

is related to the Rao-Blackwell formula. That is, 

approximate the posterior distribution with a recursive, 

stochastic mixture of Gaussians. The RBPF makes less 

estimation mistakes. The distribution of the discrete states is 

computed by RBPF. The Rao-Blackwellized particle filter is 

to improve the learning stage by estimating a posterior. Here 

Sampling Importance Resampling (SIR) filter is used for 

updating a set of samples. In the particle filtering, we use a 

weighted set of particles to approximate the posterior. This 

approximation can be updated recursively. The Gaussian 

density can be computed analytically by using marginal 

posterior density. This density satisfies the alternative 

recursion. The particle filter starts at a time with an 

unweight measure. For each particle we compute the 

importance weights using the information at time t. A 

resampling step selects only the correct particles to obtain 

the unweight measure. This yields an approximation of that 

is “concentrated” on the most likely hypothesis. Now use a 

weighted set of samples to represent the marginal posterior 

distribution. The marginal density is a Gaussian mixture that 

can be computed efficiently with a stochastic bank of 

Kalman filters. A Rao-Blackwellized filter that combines 

this marginalization and sampling. MRF filter is used for the 

image restoration, even though it has some drawbacks on 

their selection of filter parameter. Thus the application of 

RBPF with MLE edge preserving technique in this case is 

supposed to greatly improve the estimation efficiency and 

improve the restoration problem. 

  

II. RAO-BLACKWELLIZED PARTICLE 

FILTER 

  

If the model is of certain form the efficiency of SIR 

can be enhanced by using the theorem of Rao-Blackwell. 

The theorem states that if g(X) is any kind of estimator of 

some parameter θ and T(X) some sufficient statistic, then 

the conditional expectation of g(X) given T(X) is usually 

better estimate of θ and never worse. This kind of estimator 

transformation is often referred as Rao-Blackwellization. 

The Rao-Blackwellized particle filter (RBPF)is based on the 

idea that sometimes it is possible to compute some of the 

filtering equations in closed form and the other with Monte 

Carlo sampling instead of using sampling methods for all 
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equations. According to Rao-Blackwell theorem this leads 

to estimators with less variance, which can be interpret as 

replacing a finite set of particles with a infinite set, which is 

always more accurate than any finite set. In this context the 

Rao-Blackwellized particle filtering refers to marginalized 

filtering of Markov models, which are conditionally 

Gaussian of form 

p(xk|xk−1,λk−1) =

N(xk|Ak−1(λk−1)xk−1,Qk−1(λk−1))                  (2.1)  

p(yk|xk, λk) = N(yk|Hk(λk)xk,Rk(λk   
    (2.2) 

p(λk|λk−1) = (any given form),                                                 
     (2.3) 

where xkis the state,  yk the measurement and an 

arbitrary latent variable. M(𝜆) denotes that matrix M is 

conditioned on the value of latent variable 𝜆.If the prior 

distribution of xk is also Gaussian the state variables xk can 

be integrated out in closed form and only the latent variables 

λk need to be sampled. The resulting algorithm is 

summarized below. 

A. Conditionally Gaussian Rao-Blackwellized particle 

filter  

Given an importance 

distribution 𝜋(𝜆𝑘|𝜆1:𝑘−1
(𝑖)

, 𝑦1:𝑘), set of particles 

{𝑤𝑘−1
(𝑖)

, 𝜆𝑘−1
(𝑖)

, 𝑚𝑘−1
(𝑖)

, 𝑝𝑘−1 
(𝑖)

: 𝑖 = 1, … , 𝑁 conditioanls on the 

previously drawn latent vales𝜆𝑘−1
(𝑖)

 𝑎𝑠 

1. Perform kalman filter for the means of 𝑚𝑘−1
(𝑖)

 and 

the covariance’s 𝑃𝑘−1
(𝑖)

of particles 𝑖 = 1, … . , 𝑁 

conditional on the previously drawn latent 

variables 𝜆𝑘−1
(𝑖)

 as 

 

𝑚𝑘−1
(𝑖)

= 𝐴𝑘−1
(𝑖)

(𝜆𝑘−1
(𝑖)

)𝑚𝑘−1
(𝑖)

                                                      

       (2.4) 

𝑃𝑘
−(𝑖)

= 𝐴𝑘−1(𝜆𝑘−1
(𝑖)

)𝑃𝑘−1
(𝑖)

𝐴𝑘−1
𝑇 (𝜆𝑘−1

(𝑖)
) + 𝑄𝑘−1(𝜆𝑘−1

(𝑖)
)                            

  (2.5) 

2. Draw new latent variables 𝜆𝑘−1
(𝑖)

for each particle in 

𝑖 = 1, … , 𝑁from the corresponding importance 

distributions 

𝜆𝑘
(𝑖)

~ 𝜋(𝜆𝑘|𝜆1:𝑘−1
(𝑖)

, 𝑦1:𝑘)   

    (2.6) 

3. Calculate new (unnormalized) weights as follows: 

𝑤𝑘−1
∗(𝑖)

𝛼 𝑤𝑘−1
∗(𝑖) 𝑃(𝑦𝑘|𝜆1:𝑘

(𝑖)
,𝑦1:𝑘−1)𝑃(𝜆𝑘

(𝑖)
|𝜆𝑘−1

(𝑖)
)

𝜋(𝜆𝑘
(𝑖)

|𝜆𝑘−1
(𝑖)

,𝑦1:𝑘)
            (2.7) 

Where the likelihood term is the marginal measurement 

likelihood of the kalman filter 

𝑝(𝑦𝑘|𝜆1:𝑘
(𝑖)

, 𝑦1:𝑘−1) =

𝑁(𝑦𝑘|𝐻𝑘(𝜆𝑘
(𝑖)

)𝑚𝑘
−(𝑖)

, 𝐻𝑘(𝜆𝑘
(𝑖)

)𝑃𝑘
−(𝑖)

𝐻𝐾
𝑇(𝜆𝑘

(𝑖)
) + 𝑅𝑘(𝜆𝑘

(𝑖)
))   

    (2.8) 

Such that the model parameters in the kalman filter are 

conditioned on the drawn latent variable value𝜆𝑘
(𝑖)

 

4. Normalize the weights to sum to unity as 

𝑤𝑘
(𝑖)

=
𝑤𝑘

∗(𝑖)

∑ 𝑤𝑘
∗(𝑖)𝑁

𝑗=1

                                                            

     (2.9) 

5. Perform Kalman filter updates for each of the 

particles conditional on the drawn latent 

variables𝜃𝑘
(𝑖)

 

𝑣𝑘
(𝑖)

= 𝑦𝑘 − 𝐻𝑘(𝜆𝑘
(𝑖)

)𝑚𝑘
−    

     (2.10) 

𝑆𝑘
(𝑖)

= 𝐻𝑘(𝜆𝑘
(𝑖)

)𝑃𝑘
−(𝑖)

𝐻𝐾
𝑇(𝜆𝑘

(𝑖)
) + 𝑅𝑘(𝜆𝑘

(𝑖)
)                                              

      (2.11) 

𝑘𝑘
(𝑖)

= 𝑃𝑘
−(𝑖)

𝐻𝑘
𝑇(𝜆𝑘

(𝑖)
)𝑆𝑘

−1                                                              

      (2.12) 

𝑚𝑘
(𝑖)

= 𝑚𝑘
−(𝑖)

+ 𝑘𝑘
(𝑖)

𝑣𝑘
(𝑖)

    

     (2.13) 

𝑃𝑘
(𝑖)

= 𝑝𝑘
−(𝑖)

− 𝑘𝑘
(𝑖)

𝑆𝑘
(𝑖)

[𝐾𝑘
(𝑖)

]                                                                 
     (2.14) 

6. If the effective number of particles (Kitagawa, 

1996) is too low, perform resampling. After the set of 

particles have been acquired the filtering distribution 

can approximated as 

𝑝(𝑥𝑘 , 𝜆𝑘|𝑦1:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)𝑁

𝑖=1 𝛿(𝜆𝑘 − 𝜆𝑘
(𝑖)

)𝑁(𝑥𝑘|𝑚𝑘
(𝑖)

, 𝑝𝑘
(𝑖)

)                      

 (2.15) 

B. Kalman Filter Algorithm  

The aim is to compute the marginal posterior 

distribution of the discrete statesP(z0:t|y1:t). This 

distribution can be derived from the posterior distribution by 

standard marginalization. The posterior density satisfies the 

following recursion. 

P(x0:t, z0:t|y1:t) = P(x0:t−1, z0:t−1|y1:t−1) ×

 
P(yt|xt, zt)P(xt, zt|xt−1, zt−1)

P(yt|y1:t−1)
   (2.16) 

This recursion involves intractable integrals. The 

density is Gaussian and it can be computed analytically 

using the marginal posterior density. 

P(z0:t|y1:t) =

P(z0:t−1|y1:t−1)
P(yt|y1:t−1, z0:t)P(zt|zt−1)

P(yt|y1:t−1)
       (2.17)                                

The continuous probability distributions and 

discrete distributions admit densities. To represent the 

marginal posterior distribution using a weighted set of 

samples 

P̂ N(z0:t|y1:t) =  ∑ wt
(i)

δ
z0:t

(i) (z1:t)N
i=1  

    (2.18) 
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 The marginal density is a Gaussian 

mixture that can be computed efficiently with a stochastic 

bank of Kalman filters.  

P̂ N(x0:t|y1:t)  = ∑ wt
(i)P(x0:t|y1:t ,  z0:t

(i))N
i=1  

  (2.19)  

A Rao-Blackwellized filter that combines this 

marginalization and sampling of zt. The RBPF is similar to 

the PF, but we only sample the discrete states. Then for each 

sample of the discrete states, we update the mean and 

covariance of the continuous states using exact 

computations. In particular, we sample zt
(i)

and then 

propagate the mean μ
t
(i)and covariance ∑t

(i)
 of xt with a 

Kalman filter as follows: 

 𝜇𝑡|𝑡−1
(𝑖)

= 𝐴(𝑧𝑡
(𝑖)

)𝜇
(𝑡 − 1|𝑡 − 1)

(𝑖)
+ 𝐹(𝑧𝑡

(𝑖)
)𝑢𝑡 

∑t|t−1
(i) = A(zt

(i))∑t−1|t−1
(i) A(zt

(i))
T

+

B(zt
(i))B(zt

(i))
T

                            

C(zt
(i))∑t|t−1

(i) C(zt
(i))

T
+ D(zt

(i))D(zt
(i))

T
           

yt|t−1
(i) = C(zt

(i))μ
(t|t − 1)

(i) + G(zt
(i))ut 

μ
t|t

(i) = μ
t|t−1

(i) + ∑t|t−1
(i) C(zt

(i))
T

St
−1(i)(yt − yt|t−1

(i) ) 

∑t|t
(i) = ∑t|t−1

(i) − ∑t|t−1
(i) C(zt

(i))
T

St
−1(i)C(zt

(i))∑t|t−1
(i)

  

Where  

μ
t|t−1

≜ E(xt|y1:t−1), μ
t|t

≜ E(xt|y1:t), μ
t|t−1

≜

E(xt|y1:t−1), ∑t|t−1 ≜ cov (xt|y1:t−1), ∑t|t ≜ cov (xt|y1:t)  

And  St ≜ cov (yt|y1:t−1).  

Hence, using the prior proposal forzt, find that the 

importance weights for ztare given by the predictive 

density. 

    P(yt|y1:t−1, z1:t) = N(yt; yt|t−1, St) 

Here, the KF and PF parts interact heavily and 

steps in the respective algorithms are mixed, therefore it is 

difficult to clearly see the problem structure and how to use 

standard components in the filtering. Also, the time update 

and measurement update of the various filters are neither 

completely separated nor straight forwardly explained. 

RBPF Standard Formulation: 

Step 1: Initialization: 𝐹𝑜𝑟𝑖 =

1, … , 𝑁, 𝑥0|−1
𝑝,(𝑖)

~𝑝𝑥0
𝑝

(𝑥0
𝑝

)and set {𝑥0|−1
𝑘,(𝑖)

, 𝑃0|−1
(𝑖)

} = {𝑥̅0
𝑘, 𝑃0}. 

Let t=0. 

Step 2: PF measurement update:𝐹𝑜𝑟 𝑖 =  1, . . . , 𝑁, 

evaluate and normalize the importance weights using to the 

likelihood. 

𝑝(𝑦𝑡|𝑋𝑡
𝑝

, 𝑌𝑡−1) = 𝑁 (ℎ(𝑥𝑡
𝑝

)

+ 𝐻(𝑥𝑡
𝑝

)𝑥̂𝑡|𝑡−1
𝑘 , 𝐻(𝑥𝑡

𝑝
)𝑃𝑡|𝑡−1 (𝐻(𝑥𝑡

𝑝
))

𝑇

+ 𝑅𝑡) 

Sample the particle    

Step 3: PF time update and Kalman filter update 

        3.1: KF measurement update 

𝑥̂𝑡|𝑡−1
𝑘,(𝑖)

= 𝑥̂𝑡|𝑡−1
𝑘,(𝑖)

+ 𝐾𝑡(𝑦𝑡 − ℎ(𝑥𝑡
𝑝

) − 𝐻(𝑥𝑡
𝑝

)𝑥̂𝑡|𝑡−1
𝑘,(𝑖)

) 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝑀𝑡𝐾𝑡
𝑇 

𝑀𝑡 = 𝐻(𝑥𝑡
𝑝

)𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝑥𝑡

𝑝
) + 𝑅𝑡 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑇(𝑥𝑡
𝑝

)𝑀𝑡
−1 

        3.2: PF time update: 

 𝐹𝑜𝑟 𝑖 =  1, . . . , 𝑁, 

𝑥𝑡+1
𝑝,(𝑖)

~𝑁 (𝑓𝑝(𝑥𝑡
𝑝,(𝑖)

)

+ 𝐹𝑝(𝑥𝑡
𝑝

)𝑥̂𝑡|𝑡
𝑘,(𝑖)

, 𝐹𝑝(𝑥𝑡
𝑝

)𝑃𝑡|𝑡 (𝐹𝑝(𝑥𝑡
𝑝

))
𝑇

+ 𝑄𝑡
𝑃) 

       3.3: KF time update, 

𝑥̂𝑡+1|𝑡
𝑘,(𝑖)

= 𝐹𝑘𝑥̂𝑡|𝑡
𝑘,(𝑖)

+ 𝑓𝑘(𝑥𝑡
𝑝

)

+ 𝐿𝑡 (𝑥𝑡+1|𝑡
𝑝,(𝑖)

− 𝑓𝑝 (𝑥𝑡
𝑝,(𝑖)

)

− 𝐹𝑝(𝑥𝑡
𝑝

)𝑥̂𝑡|𝑡
𝑘,(𝑖)

) 

𝑃𝑡+1|𝑡 = 𝑘(𝑥𝑡
𝑝

)𝑃𝑡|𝑡 (𝐹𝑘(𝑥𝑡
𝑝

))
𝑇

+ 𝑄𝑡
𝑘 − 𝐿𝑡𝑀𝑡𝐿𝑡

𝑇 

𝑀𝑡 = 𝐹𝑘(𝑥𝑡
𝑝

)𝑃𝑡|𝑡 (𝐹𝑘(𝑥𝑡
𝑝

))
𝑇

+ 𝑄𝑡
𝑃 

𝐿𝑡 = 𝐹𝑘(𝑥𝑡
𝑝

)𝑃𝑡|𝑡 (𝐹𝑝(𝑥𝑡
𝑝

))
𝑇

𝑀𝑡
−1 

Step 4: Set 𝑡: 𝑡 + 1 and repeat from step 2.  

A. Maximum Likelihood Estimation (MLE) 

The measured intensity of a pixel can be 

considered as a random variable that takes a value Iin the 

space of observationsΩ. Given an observedI, the probability 

that it resulted from a true intensity I′of scene radiance is 

given by the conditional probability densityP(I|I′). Alter et 

al. [2] presents a similarity measure based on ML 

estimation. From two observations, it first estimates the true 

intensityI∗, and then derives similarity as the product of 

conditional probabilities: 

I∗ = p(I1|I′)p(I2|I′)
I′

argmax
  (2.20 )  

SML(I1, I2) = p(I1|I∗)p(I2|I∗)  (2.21) 

  

The ML similarity SML is defined as the likelihood 

of two intensity observations resulting from the single true 

intensity I∗that gives the greatest likelihood 

III. PROPOSED RBPF WITH MLE EDGE 

PRESERVING ALGORITHM 

Sequential importance sampling step,  

Step 1: For i = 1, … , N, 

Set   μ̂
t|t−1

(i) ≜ μ
t|t−1

(i) , ∑̂t|t−1
(i) ≜ ∑t|t−1

(i) ,  

    (3.1) 

  

   Sample      ẑt
(i)~ Pr(zt|zt−1

(i) )  

    (3.2)  

Step 2: For i = 1, … , N, evaluate and normalize the 

importance weights 

wt
(i)

αP(yt|y1:t−1ẑt
(i))                     

     (3. 3) 

Selection step 

Step 1: Multiply/Discard particles  

{𝜇̂𝑡|𝑡−1
(𝑖)

, ∑̂𝑡|𝑡−1
(𝑖)

, 𝑧̂𝑡
(𝑖)

}
𝑖=1

𝑁

  (3.4) 

 With respect to high/low importance weightswt
(i)

 

to obtain N particles  
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Here the low/high weights are update by the 

probability function, it is obtained by MLE  

{𝜇𝑡|𝑡−1
(𝑖)

, ∑𝑡|𝑡−1
(𝑖)

, 𝑧𝑡
(𝑖)

}
𝑖=1

𝑁

          (3.5)                           

Updating step  

Step 1:For  i = 1, … , N, use one step of the Kalman 

recursion to compute the minimum statistics  

{𝜇𝑡+1|𝑡
(𝑖)

, ∑𝑡+1|𝑡
(𝑖)

, 𝑦𝑡+1|𝑡
(𝑖)

, 𝑆𝑡+1
(𝑖)

, } (3.6) 

 Given  {zt
(i), μt|t−1

(i) , ∑t|t−1
(i) }     (3.7) Edge 

preserving:  

Step 1:  apply the edge preserving function using 

equation 2.20 and 2.21  in the   updating step    

 

IV. EXPERIMENTAL RESULTS 

The performance of the proposed algorithm is 

tested with different noise levels. Each time the test image is 

corrupted by different additive white Gaussian noise 

standard deviation 10 and 50. These surveillance noisy 

images are denoised by two algorithms and the performance 

difference between the particle filter and the proposed 

approach measured by the parameters PSNR, MSE, RMSE, 

NAE, NCC, MAE and SNR. Noise removal for surveillance 

image is done by using proposed RBPF with MLE edge 

Preserving. Extensive comparative studies for surveillance 

image for both proposed RBPF algorithm with MLE edge 

Preserving to the existing standard particle filter. 

A. Performance Metrics 

Noise removal in the surveillance images is done 

using proposed edge preserving particle filter and Standard 

Particle Filter. The results were evaluated using 

performance metrics such as PSNR, MSE, RMSE, NAE, 

NCC, MAE and SNR  

Let us take  

x = double(input image), 

 y = double(filtered image), 

 z = abs(x − y) 

Mean Square Error  

(MSE) = √mean(mean(Z2))         Higher value 

of MSE means that the quality of image is poor.  

RMSE = √MSE   RMSE is similar to MSE; if the 

value of RMSE is small it means that the image quality of 

the restored image is good.   

Peak signal to Noise Ratio  

(PSNR)= 25 ∗ log 10 (
25

√MSE
  )  

Higher value of PSNR means the restored image is 

of better quality.   

Let us take difference = x − y 

Normalized Absolute Error  

(NAE) =
sum(sum(abs )difference)))

sum(sum(abs(x)))
  

The smaller value of NAE means that the removal 

of noise in the image is better.  

Let us assume x1 = sum(sum(x2))  

Normalized Cross Correlation  

(NCC) =
sum(sum(x∗y)

x1
  

If the Normalized Cross Correlation tends to 1, 

then the image quality will be better.   

Mean Absolute Error is a quantity used to measure 

the sum of absolute difference between input image and the 

filtered image to the number of pixels present in the image. 

Mean absolute error is the average of an absolute error, 

where fi is the filtered image and y
i
 is the input image. 

Maximum Absolute Error  

(MAE)=
1

n
∑ |fi − y

i
|n

i=1   

Lower value of MAE means better result in image 

quality.  

Signal to Noise Ratio denoted as SNR is defined as 

power of original signal to power of the corrupted signal.  

Signal-to-Noise Ratio  

(SNR)= 10 log
10

(
P signal

P noise
)                    

B. Results for Surveillance image 

10 % and 50% of Noise level is added to 

Surveillance image. Comparison of RBPF with MLE edge 

Preserving to the standard particle filter using performance 

metrics are given below . 

 
TABLE 4.1: PERFORMANCE METRICS FOR NOISE 

LEVEL 10% AND 50% 

PERFORMA

NCE 

METRICS  

NOISE LEVEL 10%  

 

NOISE LEVEL 50%  

 

EXISTING 

STANDARD 

PARTICLE 

FILTER 

PROPOSED 

RPBF WITH 

MLE EDGE 

PRESERVING 

EXISTING 

STANDAR

D 

PARTICLE 

FILTER 

PROPOSED 

RPBF WITH 

MLE EDGE 

PRESERVIN

G 

PSNR 22.506  30.0159 21.366  29.1990 

MSE 6.3336 2.9363 7.1217 3.1979 

NAE 0.1048 0.0486 0.1177     0.0529 

SNR 18.638  18.6389 18.638  18.6386 

MAE 12.569  5.8308 14.125  6.3499 

NCC 0.9750 0.9913 0.9701 0.9904 

EXECUTION 

TIME 
2.0714 32.8536 2.1392 23.4360 

      
   

Fig 4.1  : Performance metrics of 10% Noise level for 

surveillance image    
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Fig. 4. 2: Performance metrics of 50% Noise level for 

surveillance image 

 

  

The PSNR, MSE, NAE, SNR, MAE and NCC 

values are given in Table 4. 1. From the results shows that 

for noisy images (10% and 50%), proposed RBPF with 

MLE edge preserving algorithm obtains comparable PSNR, 

MSE, NAE, SNR, MAE and NCC values to the existing 

standard particle filter algorithm. Performance evaluation 

involves a qualitative criterion that reflects the ability of the 

proposed RBPF with MLE edge preserving algorithm 

suppress noise while preserving image details is given in 

Figure 4. 1 and 4.2. It is clear that RBPF with MLE edge 

preserving technique consistently outperforms existing 

standard particle filter  and achieves the best results.  

V. CONCLUSION 

In this paper, proposed a denoising method 

motivated by previous analysis of particle filter. Insights 

from that study are used here to derive a high-performance 

denoising algorithm. Proposal Rao-Blackwellized particle 

filters (RBPF) with MLE edge preserving that exploits 

image denoising. The performance of RBPF with edge 

preserving approach is experimentally verified on a 

surveillance image and noise levels of 10% and 50%. The 

results presented here demonstrate that proposed method is 

compared to existing standard particle filter. Experimental 

validation of RBPF with MLE edge preserving method and 

compare it, visually and quantitatively, to existing standard 

particle filter with some performance metrics and concluded 

that our method suppresses the noise effectively, while 

retaining the fines details compared to existing denoised 

method of standard particle filter. 
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